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the presently investigated multiplets, the results of this 
experiment should be regarded as superseding his and 
Foster's values. 

For all multiplets except the one at 4368 A the spread 
between the most recent theoretical and experimental 
results, namely those of Bates and Damgaard, Kelly, 
Vainshtein, Buttrey and Gibson, Doherty and this 
experiment, does not exceed 26%. One of the rare 
cases is encountered, where the agreement between 
several independent methods is so good that one may 
consider the mean values from the above mentioned 
methods reliable to within 10%. These mean values are 

I. INTRODUCTION 

TH E theory of nonequilibrium phenomena has been 
significantly extended by the development of 

relationships between the linear response of a system to 
an external disturbance and the time-dependent correla­
tion functions expressing the propagation of equilibrium 
fluctuations in the system. These developments have 
been primarily used to give exact expressions for 
transport coefficients in terms of time-dependent corre­
lation functions.1 I t is, however, sometimes profitable 
to use our knowledge of the linear response to determine 
certain properties of those correlation functions that are 
directly measurable. 

In recent years inelastic scattering of slow neutrons 
has become an important process for the study of 
molecular dynamics in condensed states of matter.2 

In a well-known work Van Hove3 showed that the en­
ergy and angle differential cross section is proportional 
to the double Fourier transform of a time-dpendent 
correlation function G(t,t). By definition, G(t,f) is the 
equilibrium ensemble average of a product of two 
time-dependent density operators and is therefore 

* Work supported in part by the U. S. Atomic Energy 
Commission. 

1 R. Kubo, Lectures in Theoretical Physics (Interscience Pub-
Ushers, Inc., New York, 1959), Vol. I, Chap. 4. 

2 Inelastic Scattering of Neutrons in Solids and Liquids (Inter­
national Atomic Energy Agency, Vienna, 1961); also Vol. I, 1963. 

3 L. Van Hove, Phys. Rev. 95, 249 (1954). 

recommended for future applications and are assembled 
in Table I I . 

The comparison indicates, furthermore, that for the 
lighter elements the advanced theoretical methods 
give results as reliable as experiments. Since the former 
involve less time and effort (the Coulomb approxima­
tion by Bates and Damgaard is generally available), 
they should be extensively applied. On the other hand, 
experimental determination of transition probabilities 
should be concentrated on transitions where interfer­
ences in the transition integrals or deviations from 
LS coupling occur. 

closely related to the linear response of the system to an 
externally induced density disturbance. As recently 
emphasized by Kadanoff and Martin,4 connections of 
this type can be usefully exploited, particularly in the 
limit of slow space and time variation. In the present 
work we consider arbitrarily fast space and time varia­
tion, but are restricted to the limit of low density. 

Since G(r,t) is in general complex its interpretation 
as a time-displaced, density-density correlation function 
has no simple physical meaning.5 On the other hand, the 
physical content of this function is simply revealed 
when it is considered in classical terms. For then G(r,t) 
gives the probability per unit volume of finding an atom 
at (t,t) given an atom at the origin at t=0 and clearly 
describes the space-time evolution of density correla­
tions in the system. In the following sections we make 
explicit use of this physical interpretation; consequently, 
the calculation concerns only classical systems.6 

When a system initially in equilibrium is perturbed 
very slightly, its behavior, except for short-time transi­
ents, can be described in terms of the variations of a 
small number of macroscopic quantities. Moreover, 

4 L. Kadanoff and P. C. Martin, Ann. Phys. (N. Y.) 24, 419 
(1963). 

5 For an interpretation of the imaginary part of G(r,t), see L. 
Van Hove, Physica 24, 404 (1958). 

6 The relation between neutron scattering and the classical 
correlation function has been studied by R. Aamodt, K. M. Case, 
M. Rosenbaum, and P. F, Zweifel, Phys. Rev. 126, 1165 (1962). 
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time-dependent density correlation function G(r,t). The results are appropriate to a dilute fluid for arbitrary 
ratio of wavelength to mean free path. The results of the model calculations are compared to those derived 
from the linearized hydrodynamic equations. Since neutron and light-scattering experiments can be analyzed 
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with the system in local thermodynamic equilibrium, 
the ensuing changes will occur only gradually. Since the 
linear response of the system in these situations can be 
calculated on the basis of linearized hydrodynamic 
equations, the same equations can therefore be used to 
determine the long-wavelength components of the cor­
responding time-dependent correlation functions. I t is 
widely recognized that the density correlation function 
G(r,/) has a hydrodynamic limit for slowly varying dis­
turbances.3'7 This limit exists for any fluid, and in 
neutron scattering it is a general result to be expected 
at sufficiently small momentum transfer. 

The two processes which characterize hydrodynamical 
behavior of a classical one-component fluid are sound 
propagation and heat conduction. The importance of 
the latter in connection with scattering near the critical 
temperature has been examined by Van Hove.3 The 
presence of sound-wave propagation gives rise to a peak 
in the inelastic portion of the scattered neutron spec­
trum. This sound-wave peak is a quite general feature 
of an interacting many-body system. For liquid helium 
II near absolute zero,8 or for a harmonically vibrating 
crystal lattice, it can be described as the emission and 
absorption of single, freely propagating phonons. For 
helium at higher temperature or for a classical fluid, 
it can be described in terms of a more conventional 
local thermodynamic equilibrium disturbance which is 
propagated by frequent collisions. Recently, EgelstafT9 

and Ruijgrok10 have considered the excitation of sound 
waves as a basic process in coherent neutron scattering 
by simple classical liquids. I t is interesting that they 
reached similar conclusions, although Ruijgrok started 
from approximate hydrodynamic equations while Egel-
staff started by analogy to a poly crystalline solid. Per­
haps the most interesting application of the linearized 
hydrodynamic equations is to liquid helium II , where 
heat conduction is replaced by second-sound propaga­
tion. The possibility of seeing a second-sound peak in 
neutron scattering has been recently discussed by 
Hohenberg and Martin.11 

The hydrodynamic limit is not sufficient to determine 
the behavior of G(r,t) in the space-time region of interest 
for neutron-scattering experiments. A theory at the 
molecular level is needed, but a calculation from first 
principles for a liquid is not feasible. There have been 
several attempts to develop a theory of neutron scat­
tering in liquids in terms of specific dynamical 
models.12-13 These theories have been primarily focused 
on the self-correlation function Gs(tjt), which gives the 
probability per unit volume of finding an atom at 

7 P. G. deGennes, Physica 25, 825 (1959). 
8 Michael Cohen and Richard P. Feynman, Phys. Rev. 107,13 

(1957). 
9 See P. EgelstafT in Ref. 2 (1963), Vol. I, p. 203. 
10 Th. W. Ruijgrok, Physica 29, 617 (1963). 
11 P. C. Hohenberg and P. C. Martin, Phys. Rev. Letters 12, 

69 (1964). 
12 G. H. Vineyard, Phys. Rev. 110, 999 (1958). 
13 K. S. Singwi and A. Sjolander, Phys. Rev. 119, 863 (1960); 

A. Rahman, K. S. Singwi, and A. Sjolander, ibid. 126, 997 (1962). 

position r and time t knowing that the same atom was at 
the origin at time zero. The motion of a single atom 
described by Gs(r,t) is then related to G(r}t) through 
Vineyard's12 convolution approximation. This approxi­
mation is known to fail in the hydrodynamic limit14 

appropriate to small-momentum transfer, but its ap­
plicability in the range of momentum transfer currently 
accessible to experiment is an unresolved question. 

We would like to have a molecular theory which 
demonstrably has the correct hydrodynamic limit. 
Even if this can be done only for a highly idealized 
system, we will then have some idea as to the range of 
applicability of the hydrodynamic equations in calcu­
lating the density correlation function. Since the linear­
ized hydrodynamic equations give explicit expressions 
for the scattered neutron energy distribution in terms 
of thermodynamic derivatives and transport coef­
ficients,4 an indication of their range of applicability 
would be quite useful. The only system for which we 
have such a theory is the dilute gas. As long as we re­
strict our attention to a time scale long compared to 
the duration of a collision, the response to a small 
density disturbance in a gas can be calculated from the 
Boltzmann equation.15 In particular, the linearized 
Boltzmann equation provides an appropriate descrip­
tion of sound propagation in gases16 for arbitrary 
frequency. 

In this paper we consider a description of G(rJ) 
based on the linearized Boltzmann equation. By speci­
fying an appropriate initial condition the integral of the 
phase-space distribution over velocity can be identified 
with G(r,t). Actually, the description can be made ap­
propriate for either G(r,i) or G8(r,t), depending on the 
particular form of the equation employed. This was 
recently pointed out by Nelkin and Ghatak17 in using 
the linearized Boltzmann equation of neutron transport 
theory (in which the collisions do not conserve energy 
and momentum) to calculate G8(rfy. In order to simplify 
the computation these authors introduced an approxi­
mate transition probability. A similar approach is 
followed here, but since G(t,t) corresponds to the evolu­
tion of a density disturbance it is essential that our ap­
proximation does not distort the basic propagation 
mechanisms by violating the kinematical laws of con­
servation. In fact, the conservation of energy and mo­
mentum constitutes the only difference between our 
description of G(t,t) and that of G8(t,t) in Ref. 17, but 
this difference makes the calculations considerably 
more complicated. 

The kinetic model which we employ is already in use 
in other contexts related to rarefied gas dynamics. In 
the next section we discuss briefly the model and pro-

14 P. G. deGennes in Ref. 2 (1961), p. 239. 
16 H. Grad, Handbuch der Physik, edited by S. Fltigge (Springer-

Verlag, Berlin, 1958), Vol. 12, p. 205. 
16 G. E. Uhlenbeck and G. W. Ford, Lectures in Statistical 

Mechanics (American Mathematical Society, Providence, Rhode 
Island, 1963). 

"Mark Nelkin and Ajoy Ghatak, Phys. Rev. 135, A4 (1964). 
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ceed to identify G(r,t) with the solution of the transport 
equation. In our context the model enables us to evalu­
ate the Fourier transform of G(t,t) exactly in terms of 
analytic functions. This evaluation is somewhat simpler 
if we relax the requirement of energy conservation. The 
calculation is applicable to arbitrary ratio of wavelength 
of the disturbance to mean free path ; in particular, the 
correct hydrodynamic limit is obtained. In Sec. I l l we 
discuss the comparison of our results with those based on 
the linearized hydrodynamic equations and examine the 
applicability of the latter in the region where the 
wavelength is comparable to the mean free path. 

II. DESCRIPTION OF G(r,t) 

In formulating a description of G(r,t) we are interested 
in the response of a molecular system to a microscopic 
density disturbance. I t is clear from the physical in­
terpretation of the correlation function that this dis­
turbance arises as a result of the localization of a par­
ticle. Because the system deviates from equilibrium 
very slightly the space-time evolution of the disturbance 
can be appropriately described by the linearized Boltz-
mann equation with proper initial condition. The prob­
lem is well defined once the connection between G(r,t) 
and the solution of the linear transport equation is 
established. The task of actually solving the Boltzmann 
equation for a particular two-body interaction is suf­
ficiently involved that, in an initial attempt, we con­
sider the alternative approach of using a kinetic model 
as an approximate description. 

In simplifying the transport equation, we replace the 
detailed description of the interatomic collisions by a 
single parameter model. As long as this model is con­
structed to maintain the conservation of particle 
number, momentum, and energy, the essential features 
of the propagation of a density disturbance will be cor­
rectly described. The kinetic equation that we use is 

( - + v - v ) / ( r , v , 0 = a J F W Z ( r , 0 - / ( r , v , 0 

+pF(v)\ - v . q ( r , / ) + ( 
U 2 W 2 / To J 

where / is the deviation from equilibrium of the one-
particle distribution function, n(r,y,t) = pF(v)+f(t,Y,t), 
and p is the constant density. Other symbols are defined 
as follows : 

F(v)= ( W ) - 3 / 2 e x p ( - t f y V ) , 
2kT0 

vo2 

(1) 

M 

q(r,t)^(l/p) dhvf(t,v,t), 
(2) 

where M is the atomic mass, To is the equilibrium tem­
perature of the fluid, and r is the deviation in the local 
temperature, T—T0+T. The quantity a is a constant 
and is the parameter of this model. Equation (1) is the 
linearized form of a model first proposed by Bhatnagar, 
Gross, and Krook18 (BGK); subsequently it has been 
used in a variety of applications.19,20 One can readily 
verify that all the collisional invariants are preserved 
and that an H theorem exists. The connection between 
this equation and the linearized Boltzmann equation 
has been demonstrated by Gross and Jackson.20,21 They 
showed that (1) follows immediately from the Boltz­
mann equation if all the nonzero eigenvalues of the col­
lision operator are approximated by a single constant 
a. This parameter has the interpretation of a relaxation 
frequency so the BGK model is often called the single-
relaxation-time model. Since the zero eigenvalues are a 
consequence of conservation laws one can expect the 
kinetic model to give reasonable results for macroscopic 
quantities, particularly in the hydrodynamic region. 
Considerations of the stress tensor and heat flux as far 
as the second (Burnett) approximation indicate that this 
is indeed the case.22 In the same spirit one can employ 
more elaborate models characterized by a number of 
relaxation times.23 A description with more adjustable 
parameters allows more latitude in the scope of applica­
tion, but it also loses much of the simplicity which is the 
essential advantage of a kinetic model. 

To study G(x,t) we consider the initial value problem 
with 

/(r,v,0) = F(»)5(r). (3) 

I t is necessary that the particle initially localized at 
the origin have a Maxwellian distribution in velocity 
because inherent in the definition of the correlation 
function is an ensemble average. We now make the 
identification 

G(r,0 = Z(r,0+P (4) 

since the two quantities have the same physical in­
terpretations. Equations (1) through (4) therefore 
constitute our description of G(t,t). 

In their original application of the kinetic model 
BGK considered the problem of small-amplitude oscil­
lations in gases. This is the same problem envisaged 
here. Their calculations, however, need to be extended 
for our purposes since they studied in detail only the 
dispersion relation and we require explicitly the velocity 
integral of the distribution function. Actually, the corre-

/ -
p Z V M r , 0 = (1AW) dWf(t,v,t)-Z(T,t) 

18 P. F. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 
511 (1954). 

19 For example, E. P. Gross and M. Krook, Phys. Rev. 102, 
593 (1956); E. P. Gross, E. A. Jackson, and S. Ziering, Ann. Phvs. 
(N. Y.), 1, 141 (1957). 

20 E. P. Gross and E. A. Jackson, Phys. Fluids 2, 432 (1959). 
21 E. P. Gross, in Rarefied Gas Dynamics, edited by F. M. 

Devienne (Pergamon Press, Ltd., London, 1960), p. 139. 
22 H. T. Yang, Phys. Fluids 2, 237 (1959). 
23 L. Sirovich and J. K. Thurber, in Rarefied Gas Dynamics, 

edited by J. A. Laurman (Academic Press Inc., New York, 1963), 
Vol.1, p. 159. 



A1244 S . Y I P A N D M . N E L K I N 

0.6 

0.4 

0.2 

1 1 

V 
I I \ 

0 , 5 \ \ \ ^ v 

I 1 

1 I I 1 

y = 2 

0 . 2 N \ \ \ \ 

1 I 1 1 

1 

-

_ 

1 
0.6 0.8 

0)/KVrt 

FIG. 1. System response to a microscopic density disturbance 
for various ratios (ratio = 2-K^ly) of wavelength to mean free path 
as calculated from Eqs. (6) and (7), R= (KvoMSfay). 

lation function G(t,t) is not a quantity of direct experi­
mental interest. What is measured in neutron scattering 
is its Fourier transform 

S(K,<o) 
" / > / 

dhGitjy^*-" •—cat) 

= 2 Re J dt f fPrG(r9t)e^K'^ut). (5) 

The second relation holds because G(r,t) is even in /. For 
isotropic systems G(r,t) is a function only of the magni­
tude of r, so S which is even in co depends only on the 
magnitude of K. 

In scattering problems the variables hK and hco 
represent momentum and energy transfers, but with 
regard to the kinetic equation K and co are more ap­
propriately interpreted as the wave number and angular 
frequency of the density disturbance. This is an explicit 
manifestation of the relation between equilibrium den­
sity fluctuations and the neutron-scattering properties 
of the system. 

The calculation of S(K,oo) is a straightforward matter 
and the reader is referred to BGK for details of the solu­
tion of Eq. (1). After a number of algebraic manipula­
tions we obtain 

s(*,y)=y-( 2 ) , (6) 
Kv0\ T32+742 / 

where we have introduced the dimensionless variables 

X=—OO/KVQ and y=a/Kv0j 

and the yn are defined by 

yi=a5B1—a6B2+y(azC1—a4C2), 

72= aeB1+abB2+y(a£i+azC2), (7) 

yz=a1B1-a2B2+y(azA1— a±A2), 

74= aJBx+aiBt+yiaiAi+a^A2), 

with 

# i= l—yU—2xyei, a2= — y(V+2xe2), 

ez3= € 3 - U/2, a 4 = e 4 - V/2, 

a 5 = U/2+ye2, aQ= V/2—yely 

ei=xU—yV, e2=xV+yU—l, 

63= (x2-y2) U- 2xyV+y, € 4= (x2-y2)V+2xyU-x, 

A1=l-iy(ez+xf31+U+2xe1), 

A2=-iy(€4+xf32+V+2xe2), 

5 i = l - i y ( € 8 + ^ i + J 7 - y f t ) , 

Ci=i(€8+yft+^+2y€ 2) , 

C2=l(ei—yPi+v—2yei), 

f31=2(x2-y2)(xU-yV)+Axy(l-yU-xV), 

/32= 2(x2-y2)(xV+yU- l)+4txy(xU-yV)-l, 

U= {Tryi2U'{x,y), V= (ryiWfay). 

The functions U' and Vr are, respectively, the real and 
imaginary parts of the probability integral of complex 
argument, 

W(x+iy) = UJ'(x,y)+iV''(x,y) 

TV J -Q 

dt-
x—t+iy 

(8) 

Using tabulated values of Uf and V24 we have com­
puted S as a function of x for different values of y. 
Some typical results are plotted in Fig. 1 in terms of the 
dimensionless quantity R= (KVO/TT)S. For comparison 
we show in Fig. 2 corresponding results calculated in 
the isothermal approximation18 ( r = 0 ) . This approxima­
tion simplifies the algebra considerably, and we find 
that 5 in this case is also given by (6) but (7) is replaced 
by 

7 i = U(f+i)+xyV—y, 

72=V(f+i)-xyU, (9) 

yd=l-yU(l+2x2)+2xy2V, 

yi=2xy-yV(l+2x2)-2xy2U. 

As we examine the results in Figs. 1 and 2, we see 
that all the general features of density correlation are 
displayed in the Fourier components of G(r,t). In these 

24 V. N. Faddeyeva and N. M. Terent'ev, Tables of the Proba­
bility Integral for Complex Arguments (Pergamon Press, Ltd., 
London, 1961). 
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calculations the dimensionless parameter y is a measure 
of the wavelength of the disturbance as compared to 
the collision mean free path. Thus, the Knudsen region 
is characterized by 3><3C1, whereas the hydrodynamic 
region corresponds to yS>l. When collisions are rare 
(small y) all disturbances dissipate by free particle flow, 
and since these motions are uncorrelated the higher 
frequency components are more strongly attenuated. 
In the collisionless limit we have 

lim S(x,y) = [^Y^Kv^r1 exp(-x2). (10) 
2/->0 

This is a general result independent of models. It is easily 
checked analytically that the isothermal calculation 
gives this limit correctly, and the numerical results 
using (7) also satisfy (10). As the wavelength becomes 
comparable to the mean free path, correlation effects 
from successive collisions become appreciable and 
thereby cause the attenuation at certain frequencies 
to be markedly reduced. For very long wavelength dis­
turbances the response varies sharply with frequency. 
This is the region where transport processes are domi­
nated by collisions so it is not surprising that the iso­
thermal approximation gives significantly different 
results. 

The present calculations for large y are particularly 
simple to interpret in terms of equilibrium density 
fluctuations. The processes involved arise as a conse­
quence of fluctuations in pressure and temperature (or 
entropy). The mechanical and thermal effects are 
generally coupled, but at low temperatures or long 
wavelengths they manifest in different ways. It is well 
known that the pressure waves propagate adiabatically 
while the thermal waves diffuse.25 This phenomenon, 
long familiar in the theory of Rayleigh scattering,26 

gives rise to a spectrum consisting of two equally dis­
placed components (the Brillouin doublet) due to sound 
propagation and a central component due to heat con­
duction. The curve for y=2 in Fig. 1 exhibits just this 
behavior, while the corresponding curve in Fig. 2 shows 
only the sound peak, since temperature variations are 
ignored. It is interesting to note that the sound peak 
occurs in these two calculations at values of x predicted 
by the adiabatic and isothermal sound speeds, (f)1/2flo 
and fl0/v2, respectively. There appears to be little dis­
persion effect at this value of y. 

Finally, it should be emphasized that by virtue of its 
relation to the Boltzmann equation, the kinetic model 
is constrained to give results appropriate to dilute fluids. 
This can be seen from the prediction that in the long-
wavelength limit the sound-speed values are those ap­
propriate to monatomic gases. Also, we can obtain an 
estimate of the ratio of specific heats as implied by the 
present description. It is known that the intensity ratio 

25 See, for example, J. Frenkel, Kinetic Theory of Liquids, 
(Oxford University Press, London, 1946). 

26 L. D. Landau and E. M. Lifshitz, Electrodynamics of Continu­
ous Media (Pergamon Press, Ltd., London, 1960). 
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FIG. 2. Same as Fig. 1 except that the response is calculated in the 
isothermal approximation where -S" is given by Eqs. (6) and (9). 

of the central peak to displaced peaks is given by 
(Cp-Cv)/Cv.

25 For y= 5 we find a ratio of ^0.69 as 
compared to § for ideal gases. 

III. DISCUSSION 

On the basis of a kinetic model in which collisions 
are replaced by a simple relaxation process, the energy 
distribution of neutrons coherently scattered by a fluid 
has been expressed in terms of a dimensionless parameter 
y. This parameter is inversely proportional to the 
momentum transfer and directly proportional to the 
relaxation frequency a, which represents the average 
rate at which the molecules approach local equilibrium. 
For large y the correct hydrodynamic limit for the 
density correlation function is obtained. This limit is 
characterized by a central peak whose width is deter­
mined by the rate of heat diffusion, and side peaks 
whose location and width are determined by the fre­
quency and attenuation of sound at a given wave 
number K (hK is the momentum transfer in a scattering 
event). The intensity and location of the peaks are 
determined by thermodynamic quantities characteristic 
of a dilute gas, and are a consequence of the Boltzmann-
like description. The widths of the peaks are determined 
by transport coefficients which depend on the particular 
kinetic model used. 

The most striking qualitative feature of the present 
results is the presence of a sound-wave peak and its 
persistence in Fourier components of the density correla­
tion function for wavelengths comparable to a mean free 
path. Similar structure in the inelastically scattered 
neutron energy distribution has often been discussed 
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FIG. 3. Comparison of kinetic and hydrodynamic descriptions 
as the ratio of wavelength to mean free path decreases; R is 
calculated as in Fig. 1 and R^y is calculated from Eq. (14). 
Abscissa is in units of W/KVQ. Also shown are the isothermal results 
from Fig. 2 (dashed curves). 

as an indication of solid-] ike behavior. The presence of 
such structure for a gas makes it clear that the identi­
fication of quasicrystalline atomic motions in liquids 
must be made with some care. 

Recently, Kadanoff and Martin4 derived an expres­
sion for S(K,a)) from a set of linearized hydrodynamic 
equations appropriate to a one-component fluid. With 
appropriate modifications of the notation, their Eq. 
(87a) becomes 

S(k,a>) 
\ cj, 

Cv\ DTK2 

cv c2K4r H) Cp (u2-c2K2)2+(uK2T)2 

DTK2(a>2-c2K2) 

x -
(a>2-c2K2)2+(uK2ry 

where c is the sound speed, DT=K/MPCP, 

(ID 

(V3+f) (C 

Mp GrO-
K is the thermal conductivity, rj is the shear viscosity, 
and £ is the second or bulk viscosity. 

The effects of heat conduction and sound propagation 

are quite clearly displayed in (11). The central peak is 
seen to be a Lorentizan. If the difTusivity coefficient DT 
is replaced by the self-diffusion coefficient D, the central 
peak appropriately describes the long wavelength 
behavior of the self-correlation function G8(r,t). This 
replacement is appropriate for a gas where heat is car­
ried entirely by particle motion but is not appropriate 
for a liquid. The BGK model does not allow an un­
ambiguous calculation of the self-diffusion coefficient or 
of Gs(r,t). Thus, even for a gas, a quantitative study 
of the accuracy of the convolution approximation 
relating G(r,t) to Gs(r,f) must await more accurate 
solutions of the appropriate linearized Boltzmann 
equations. 

The second term in (11) describes the response to 
pressure disturbances and is associated with the propa­
gation of a damped sound wave. The absorption is seen 
to be inversely proportional to the square of the 
wavelength. We expect (11) to be valid when the system 
is effectively in local thermodynamic equilibrium. For 
more rapid disturbances we expect dispersion and modi­
fied absorption. For a gas where local thermodynamic 
equilibrium is maintained by collisions, and structural 
relaxation phenomena can be ignored, we expect the 
BGK model to give a reasonable estimate of the range 
of K for which (11) applies. 

In order to compare (11) with (6), we must specialize 
the prediction of (11) to the BGK model. Since we start 
from the linearized Boltzmann equation, we are con­
strained to the dilute gas results 

^v/^p 5 , c=(%)ll2Vo, and 5 = 0 . (12) 

The transport coefficients are dependent on the 
model. Applying the Chapman-Enskog method,16 the 
first approximation (Navier-Stokes) gives 

K = i P (kvo2/a) and ij=pMv0
2/2a. (13) 

The same results are obtained from the nonlinear BGK 
model.27 

With these substitutions, and returning to the dimen-
sionless variables x and y, (11) becomes 

S(x,y) = 4 
LOaU 
10aLx2+(l/2y¥ (x 2 - f ) 2+(*/ ;y) 2 

2(*2-f) 
(x2- -f)2+(*/y)2-

(14) 

In Fig. 3 we compare the results obtained from the 
hydrodynamic description of Eq. (14) with those ob­
tained from the kinetic description of Eq. (6). For 3/=5 
(not shown) the curves are practically indistinguishable. 
For y = 3 they are quite similar, but for y<\ they be­
come quite different. The greater persistence of the dis-

27 J. L. Lebowitz, H. L. Frisch, and E. Helfand, Phys. Fluids 
3, 325 (1960). 
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placed peak evident in the kinetic results is to be ex­
pected since the BGK model is known to predict18 a 
sound attenuation which increases less rapidly than the 
square of the frequency. 

We thus find that the hydrodynamic description gives 
comparable results to our kinetic model for y>2. This 
indicates that the hydrodynamic description is reason­
able for values of K less than (a/2v0) = (2X)_1, where A 
is an effective mean free path for collision. 

There is no sound theoretical basis for extrapolating 
to moderately dense systems. In fact, it is clear that the 
results obtained here are not even qualitatively correct 
for a strongly interacting medium where appreciable 
local correlations exist. However, in the region where 
these correlation effects do not predominate, one might 
expect a description based upon the linearized hydro-
dynamic equations to be appropriate. For example, 
such a description should be applicable to liquids for 
very long wavelength disturbances. In neutron scatter-

I. INTRODUCTION 

TH E importance of ionizing radiation in inducing 
chemical reactions is widely recognized. For this 

reason we have prepared a simple intense source of 
ionizing ultraviolet light, monochromatic at 584 A, to 
study the chemical effects of the solar ionizing ultra­
violet on planetary atmospheres and surfaces in order 
to contribute to the scientific base of the space program. 

II. METHOD 

The Sherwood project—the attempt to control 
thermonuclear energy—has taught us a great deal 
about the properties of plasmas, and in particular that 
for helium gas. One of the principal results is that in a 
moderately dense helium plasma the rate of neutraliza-

* This research was supported by the Directorate of Chemical 
Sciences, U. S. Air Force Office of Scientific Research, Grant No. 
AF-AFOSR 245-64. 

ing, or light scattering where the process can similarly 
be described in terms of density correlations, this ap­
proach will break down for those momentum transfers 
where explicit effects of atomic structure appear in the 
angular distribution of the scattering. Since structure 
effects do not manifest in general for K < 1 0 8 cm -1, Eq. 
(11) should provide a reasonable calculation of the 
scattered energy distribution at these low values of 
momentum transfer. This is given further plausibility 
by the agreement2 obtained with experiments on in­
coherent neutron scattering on the basis of a simple 
diffusion model in this range of momentum transfer. 
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tion of He + by 

2 e r + H e + = H e + < r (1) 

is very rapid.1 In addition good methods are available 
for the measurement of plasma temperatures and 
densities.1 With the temperatures and densities known 
the rate of the three-body ion-electron recombination 
can be calculated.2,3 and compared with the observed 
intensity of the 584-A 2 1P-1 lS line. 

Our source is a very simple and low-power device for 
producing plasmas of ~1660°K and number densities 
of 1013 cm - 3 over a volume of several cubic centimeters. 
We find an intensity of ^ 4 X 1 0 1 5 584-A photons per 
second cubic centimeter. 

1 E. Hinnov and J. G. Hirschberg, Phys. Rev. 125, 795 (1962). 
2 F. Robben, W. B. Kunkel, and L. Talbot, Phys. Rev. 132, 

2363 (1963). 
3 D. R. Bates, A. E. Kingston, and R. W. P. McWhirter, Proc. 

Roy Soc. (London) A267, 297 (1962); A270, 155 (1962). 
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Intense 584-A Light from a Simple Continuous Helium Plasma* 
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A simple source for the production of continuous cold plasmas and intense line spectra associated with a 
particular gas is described in its application to helium. Plasma densities and temperatures have been meas­
ured spectroscopically. When using helium or neon gas the device becomes an intense source of ionizing radia­
tion for studies of the chemical reactions induced by the ionizing ultraviolet. The intensity of this radiation 
has been measured with reasonable accuracy by very simple photocells which are easily constructed in the 
laboratory and are only sensitive to vacuum-ultraviolet radiator; more than 1016 584-A photons per second 
are emitted by a 30-W source. The mechanism is via ion-electron recombination from a 1660°K plasma of 
^101 3 ions/3cm density. 


